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I. Schéma de Runge-Kutta d’ordre 4 (RK4) 
 

I.1. Principe 
 
Cette méthode permet de calculer des solutions approchées avec une meilleure précision que la méthode 
d'Euler, tout en restant relativement simples à mettre en œuvre. 
Nous rappelons que l’objectif est de résoudre une équation différentielle du type : 
 

{
𝑦′(𝑥) = 𝑓(𝑦(𝑥))  ∀𝑥 ∈ [𝑎, 𝑏]

𝑦(𝑎) = 𝑦0                                       
 

 

Le schéma de Runge-Kutta consiste à intégrer l’équation entre 𝑡𝑛 et 𝑡𝑛+1 : 
 

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) = ∫ 𝑓(𝑦(𝑥))𝑑𝑥
𝑡𝑛+1

𝑡𝑛

 

 
puis à approcher l’intégrale du membre de droite par la formule de Simpson : 
 

∫ 𝑓(𝑦(𝑥))𝑑𝑥
𝑡𝑛+1

𝑡𝑛

≈
ℎ

6
(𝑓(𝑦(𝑡𝑛) + 4𝑓(𝑦(𝑡𝑛 +

ℎ

2
)) + 𝑓(𝑦(𝑡𝑛+1)) 

 
Ce qui nous permet d’écrire : 

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) ≈
ℎ

6
(𝑓(𝑦(𝑡𝑛) + 4𝑓(𝑦(𝑡𝑛 +

ℎ

2
)) + 𝑓(𝑦(𝑡𝑛+1))) 

En tant que telle, cette relation est assez peu exploitable pour construire un schéma du fait que la valeur de 

𝑓(𝑦(𝑡𝑛 +
ℎ

2
)) reste mal déterminée. 

 
 

Nous allons utiliser d’abord un schéma explicite d’Euler entre les instants 𝑡𝑛 et 𝑡𝑛 +
ℎ

2
 : 

𝑦(𝑡𝑛 +
ℎ

2
) ≈ 𝑦̃

𝑛+
ℎ
2

= 𝑦(𝑡𝑛) +
ℎ

2
𝑓(𝑦(𝑡𝑛))     (1) 

 
Puis nous utilisons cette valeur de 𝑦̃

𝑛+
ℎ

2

 pour fabriquer une nouvelle approximation au même instant 

intermédiaire : 

𝑦(𝑡𝑛 +
ℎ

2
) ≈ 𝑦̃̃

𝑛+
ℎ
2

= 𝑦(𝑡𝑛) +
ℎ

2
𝑓(𝑦̃

𝑛+
ℎ
2

)     (2) 

 
Ensuite, nous trouvons une première approximation  𝑦̃𝑛+1 de 𝑦(𝑡𝑛+1) à l’aide d’une formule du point milieu : 

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) = ∫ 𝑓(𝑦(𝑥))𝑑𝑥
𝑡𝑛+1

𝑡𝑛

≈ ℎ𝑓(𝑦(𝑡𝑛 +
ℎ

2
)) 

et nous allons remplacer 𝑦(𝑡𝑛 +
ℎ

2
) par son approximation trouvée dans (2). Il vient : 

𝑦̃𝑛+1 = 𝑦(𝑡𝑛) + ℎ𝑓(𝑦̃̃
𝑛+

ℎ
2

)     (3) 

 

Pour la formule de Simpson que nous allons utiliser, on va approcher 4𝑓(𝑦(𝑡𝑛 +
ℎ

2
)) par la moyenne 

suivante : 
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4𝑓(𝑦(𝑡𝑛 +
ℎ

2
)) ≈ 2𝑓(𝑦̃

𝑛+
ℎ
2

) + 2𝑓(𝑦̃̃
𝑛+

ℎ
2

)     (4) 

 
En utilisant (3) et (4) dans la formule de Simpson, on trouve finalement : 
 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑓(𝑦(𝑡𝑛) + 2𝑓(𝑦̃

𝑛+
ℎ
2

) + 2𝑓(𝑦̃̃
𝑛+

ℎ
2

) + 𝑓(𝑦̃𝑛+1)) 

 
Avec : 

𝑦̃
𝑛+

ℎ
2

= 𝑦(𝑡𝑛) +
ℎ

2
𝑓(𝑦(𝑡𝑛)) 

𝑦̃̃
𝑛+

ℎ
2

= 𝑦(𝑡𝑛) +
ℎ

2
𝑓(𝑦̃

𝑛+
ℎ
2

) 

𝑦̃𝑛+1 = 𝑦(𝑡𝑛) + ℎ𝑓(𝑦̃̃
𝑛+

ℎ
2

) 

On remarque qu’il s’agit d’une méthode explicite. 
 

I.2. Mise en œuvre 
 
Nous allons synthétiser cela, de façon à le rendre plus facile à mettre en œuvre. 
On peut ainsi résumer la méthode RK4 par les étapes suivantes : 
Nous voulons résoudre : 

{
𝑦′(𝑡) = 𝑓(𝑦(𝑡), 𝑡)                         

𝑦(𝑡0) = 𝑦0                                       
 

 
Remarque, dans la méthode, 𝑦(𝑡0) peut très bien être une approximation à 𝑡0 trouver à partir d’une 
précédente itération… 
 

𝑘1 = 𝑓(𝑦(𝑡0), 𝑡0) 

𝑦1 = 𝑦0 + 𝑘1 ×
ℎ

2
 

𝑘2 = 𝑓(𝑦1, 𝑡0 +
ℎ

2
) 

𝑦2 = 𝑦0 + 𝑘2 ×
ℎ

2
 

𝑘3 = 𝑓(𝑦2, 𝑡0 +
ℎ

2
) 

𝑦3 = 𝑦0 + 𝑘3 × ℎ 
𝑘4 = 𝑓(𝑦3, 𝑡0 + ℎ) 

𝑦𝑓𝑖𝑛𝑎𝑙 = 𝑦0 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 
En pratique, on peut calculer 
directement 𝑦𝑓𝑖𝑛𝑎𝑙 à partir des 𝑘1, 𝑘2, 𝑘3 et 𝑘4 sans calculer les points intermédiaires. 

I.3. Exemple concret 
Travaillons sur l’équation différentielle suivante avec un pas de 0,1 : 

{
𝑦′(𝑥) = 𝑓(𝑦) = 𝑦(1 − 𝑦)  ∀𝑥 ∈ [0; 0,2]

𝑦(0) = 0,1                                       
 

 
On a : 
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𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦1 = 𝑦0 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 
 
avec : 
 

𝑘1 = 𝑓(𝑦(0)) = 0,1(1 − 0,1) = 0,09 

𝑘2 = 𝑓 (𝑦0 + 𝑘1 ×
ℎ

2
) = 𝑓(0,1 + 0,09 × 0,05) = 𝑓(0,1045) = 0,1045(1 − 0,1045) = 0,09358 

𝑘3 = 𝑓 (𝑦0 + 𝑘2 ×
ℎ

2
) = 𝑓(0,1 + 0,09358 × 0,05) = 𝑓(0,10468) = 0,10468(1 − 0,10468) = 0,09372 

𝑘4 = 𝑓(𝑦0 + 𝑘3 × ℎ) = 𝑓(0,1 + 0,09372 × 0,1) = 𝑓(0,10937) = 0,10937(1 − 0,10937) = 0,09741 

 

Ainsi,  

𝑦1 = 𝑦0 +
0,1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ≈ 0,1093 

 
On recommence ensuite avec 𝑦1 pour trouver 𝑦2… 
 

𝑦2 = 𝑦1 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 
𝑘1 = 𝑓(𝑦1) = 0,1093(1 − 0,1093) = 0,09736 

𝑘2 = 𝑓 (𝑦1 + 𝑘1 ×
ℎ

2
) = 𝑓(0,1093 + 0,09736 × 0,05) = 𝑓(0,1142) = 0,1142(1 − 0,1142) = 0,1011 

𝑘3 = 𝑓 (𝑦1 + 𝑘2 ×
ℎ

2
) = 𝑓(0,1093 + 0,1011 × 0,05) = 𝑓(0,1144) = 0,1144(1 − 0,1144) = 0,1013 

𝑘4 = 𝑓(𝑦1 + 𝑘3 × ℎ) = 𝑓(0,1093 + 0,1013 × 0,1) = 𝑓(0,1094) = 0,1094(1 − 0,1094) = 0,1052 

 

Ainsi,  

𝑦2 = 𝑦1 +
0,1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ≈ 0,1194 

 
 



 

 5 

II. TP4 : Schéma de Runge-Kutta 
 
1. Pour l’équation différentielle 𝑦′ = −2𝑦 avec 𝑦(0) = 1 vous allez écrire un programme qui vous permettra 
de calculer 𝑘1, 𝑘2, 𝑘3 et 𝑘4 ainsi que 𝑦1, 𝑦2, 𝑦3 et 𝑦𝑓𝑖𝑛𝑎𝑙 puis vous les placerez sur un graphique pour obtenir 

le même que ci-dessus où devra figurer aussi la solution exacte. 
L’intervalle est [0, 1] et le pas de 0,5. 
 
Aide Python : 
import matplotlib.pyplot as plt 
Pour tracer un segment [AB] : 
plt.plot([xA, xB], [yA, yZ], 'bo-', label='[AB]') 
Pour placer un point C : 
plt.plot(xC, yC, 'mo', label='C ') 
Nommer un point C: 
plt.text(xC, yC, "C", fontsize=12, color = 'magenta') 
 
2. En vous servant du 1, créer une fonction runge qui permettra de résoudre l’équation 𝑦′ = −2𝑦 avec 
𝑦(0) = 1 sur l’intervalle [0,10] avec un pas de temps à définir. 
Vous afficherez les 𝑦𝑓𝑖𝑛𝑎𝑙 calculés ainsi que la solution exacte. 

 
Aide Python : 
Créer une séquence de nombres stockée dans un tableau numpy : 
import numpy as np 
numpy_array = np.arange(start, stop, step) 
 
Créer un tableau numpy rempli de zéros pour un futur stockage : 
numpy_array_zero = np.zeros(shape) #shape sera la dimension de votre tableau 
 
Bonus pour les plus rapides : 

On choisit τ = 1 et u0 = 1 pour l’équation différentielle 
𝑑𝑢

𝑑𝑡
 +  

𝑢(𝑡)

𝜏
 =  0.  

3. Tracer le graphe de la solution exacte pour 0 ≤ t ≤ 1.  
 
4. Créer une fonction runge (vous pourrez réutiliser votre travail du 2) qui permettra de calculer les 
approximations avec la Runge-Kutta 4 pour 0 ≤ t ≤ 1.  
 
5. Soit 𝑣(∆𝑡, 𝑡 =  1) la valeur approchée de 𝑢(𝑡 =  1) à l’instant 𝑡 =  1 pour le pas de temps ∆𝑡. Tracer la 

courbe de l’erreur 𝑙𝑜𝑔 |𝑣(∆𝑡, 𝑡 = 1) − 𝑢(𝑡 = 1)|  en fonction du paramètre 𝑙𝑜𝑔 (
1

Δ𝑡
) pour des valeurs de ∆𝑡 

qu’on choisira de la manière la plus simple possible. 
Retrouver ce qui a été trouvé dans le cours. 
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III. Schéma de Runge et Kutta pour le modèle 𝑑𝑊/𝑑𝑡 = 𝐴. 𝑊(𝑡) 
 
Nous voulons ici résoudre l’équation suivante : 

𝑑𝑊

𝑑𝑡
= 𝐴. 𝑊(𝑡) 

 

Avec 𝑊 = (𝑢
𝑣

) et la matrice A=(
0 −1

𝜔0
2 0

) comme vu dans la séance 5. 

𝑘1 = 𝐴𝑊𝑛 
 

𝑊1 = 𝑊̃
𝑛+

1
2

= 𝑊𝑛 + 𝐴𝑊𝑛

ℎ

2
= (𝐼2 +

ℎ

2
𝐴)𝑊𝑛 

𝑘2 = 𝐴(𝐼2 +
ℎ

2
𝐴)𝑊𝑛 

𝑊2 = 𝑊̃̃
𝑛+

1
2

= 𝑊𝑛 + 𝐴(𝐼2 +
ℎ

2
𝐴)𝑊𝑛

ℎ

2
= (𝐼2 +

ℎ

2
𝐴(𝐼2 +

ℎ

2
𝐴))𝑊𝑛 

𝑘3 = 𝐴(𝐼2 +
ℎ

2
𝐴(𝐼2 +

ℎ

2
𝐴))𝑊𝑛 

 

𝑊3 = 𝑊̃𝑛+1 = 𝑊𝑛 + 𝐴(𝐼2 +
ℎ

2
𝐴(𝐼2 +

ℎ

2
𝐴))𝑊𝑛ℎ = (𝐼2 + ℎ𝐴(𝐼2 +

ℎ

2
𝐴 +

ℎ2

4
𝐴2))𝑊𝑛 

 

𝑘4 = 𝐴(𝐼2 + ℎ𝐴(𝐼2 +
ℎ

2
𝐴 +

ℎ2

4
𝐴2))𝑊𝑛 

 

 𝑊𝑛+1 = 𝑊𝑛 +
ℎ

6
(𝐴𝑊𝑛 + 2𝐴(𝐼2 +

ℎ

2
𝐴)𝑊𝑛 + 2𝐴(𝐼2 +

ℎ

2
𝐴(𝐼2 +

ℎ

2
𝐴))𝑊𝑛 + 𝐴(𝐼2 + ℎ𝐴(𝐼2 +

ℎ

2
𝐴 +

ℎ2

4
𝐴2))𝑊𝑛 

= [𝐼2 +
ℎ

6
(𝐴 + 2𝐴 + 2𝐴 + 𝐴 + ℎ𝐴2 + ℎ𝐴2 + ℎ𝐴2 +

ℎ2

2
𝐴3 +

ℎ2

2
𝐴3 +

ℎ2

4
𝐴4] 𝑊𝑛 

 

= [𝐼2 + ℎ𝐴 +
ℎ2

2
𝐴2 +

ℎ3

6
𝐴3 +

ℎ4

24
𝐴4] 𝑊𝑛              

 
On retiendra que le schéma de Runge-Kutta est précis à l’ordre 4. 
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